Popular Science

February 5, 2012

Video: To Enable the Robo-Insects of the Future, Researchers Capture Butterfly Flight at 3,000 FPS

Share

Neither bio-mimicking robots nor insect-analog micro aerial vehicles (MAVs) are new concepts. But where super high-speed video capture, competitive figure skating, and lepidopterology collide, there PopSci shall be. Today, that means turning our attention to Johns Hopkins University, where engineering undergrad Tiras Lin is potentially shaking up insect-like aerial robot design.

For a proper visual explanation of what Lin and colleagues are up to, the video below is thorough. But briefly: DARPA and other defense- and public safety-related research entities in both the public and private sectors have been exploring the idea of tiny, sensor-capable drones the size of aircraft for years now (regular readers have read about many of them on this site). But actually recreating mechanically the kind of flight achieved by insects is notoriously difficult.

Related Articles

Video: Japanese Researchers Create Biomimicking Artificial Butterfly, and Fly ItDARPA and GE Look to Butterfly Wings for Better Chemical SensorsCyborg Insects Could be Powered by the Bugs’ Own Digestion

Tags

Technology, Clay Dillow, butterflies, johns hopkins university, micro aerial vehicles, robotics, robots, VideoUsers want MAVs they can pilot through complex urban environments, where the variables–obstacles, tight spaces, variable air pressure and wind speeds–make it difficult to fly. Wishing to tap real insects’ tricks, mechanical engineering junior Lin crossed over into entomology, using a high-speed camera array to capture butterfly flight–wing flapping, body deformation, and anything else that contributes to mass distribution as a butterfly moves through the air.

His high-speed rig allowed him to capture 3,000 one-megapixel images per second (compare that to 24 frames per second for standard video), allowing him to dissect the forces at play as the butterflies flapped their wings roughly 25 times per second. Using three cameras, he was able to capture three dimensional data and analyze the way butterflies’ bodies and wings move in sync to provide them with their maneuverability.

His findings? Butterflies appear to be very much like figure skaters, using angular momentum as they flap their wings to modify their moments of inertia (this is akin to figure skaters tucking their arms to increase the speed of their spins and outstretching them to slow their rotation–essentially manipulating their rotation by redistributing mass). This refutes earlier assumptions that a butterfly’s wings don’t have enough mass relative to their bodies to be a factor in maneuverability. And it just might change the way roboticists approach robo-insect design going forward.

Much more via the video below.

[JHU]

Share





 
 

 
 

No Romulans, just angry volunteers: One man’s journey to restore Star Trek’s … – Ars Technica

Star Trek may be the series that bred fandom as we know it, but even among the Trekkies, Huston Huddleston is standing out: he’s about to unveil the chair from where no one has gone before. Sort of. Huddleston is a work...
by Geek Staff
0

 
 
 

Q Stops By JJ Abrams’ New Star Trek Universe To Make Trouble – io9

S No, your eyes do not deceive you — that’s Picard’s fan favorite nemesis Q, holding the new crew of the U.S.S. Enterprise in his omnipotent hands! Q takes a trip to visit the new movie-verse in IDW’s Star T...
by Geek Staff
0

 
 
 

Zack Snyder Reveals How Man of Steel 2 Became Batman Vs. Superman – io9

When you came aboard Man of Steel, were you thinking in the back of your mind, “I could be the guy who gets to reboot Batman on film too!” I gotta be honest, it definitely was a thing that… after Man of Steel fini...
by Geek Staff
0